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Reverse-flow integral methods for second-order 
supersonic flow theory 

By JOSEPH H. CLARKE 
Division of Engineering, Brown University, Providence, Rhode Island 

(Received 15 July 1963) 

A general reverse-flow relation is obtained within the framework of second-order 
(in surface deflexion) supersonic flow theory. From this it is shown that the 
second-order increment in the drag of an arbitrary quasi-cylindrical body can be 
expressed as surface and volume integrals of the$rst-order solutions correspond- 
ing to forward and reverse flow past the body. Analogous results are obtained 
for second-order transverse forces and moments on an arbitrary quasi-planar 
wing, where the first-order reverse flow must correspond to certain zero-thickness 
wings. Other similar results are possible. Thus, second-order aerodynamic forces 
on bodies may be obtained from first-order solutions by quadrature. It is also 
shown that the reverse-flow integral relation can yield the pressure distribution 
on the surface by inversion of an integral equation constructed therefrom. 
It is thought that these results should be particularly useful for the Mach- 
number range between that of linearized theory and that of full hypersonic small- 
disturbance theory. 

1. Introduction 
A general reverse-flow relation is a completely formal integral connexion 

between the flow past a body of interest (designated the forward flow) and the 
reverse flow past a body that may be the same or different. By a suitable choice 
of the reverse-flow body, one can contrive, from the general relation, useful 
expressions or results concerning the forward flow. Reverse-flow relations are 
a well-known element in the classical linearized theory of compressible flow 
(see Ward 1955 for quasi-cylinders and Clarke 1959 for general bodies). In this 
paper we present a general reverse-flow relation, and a number of its consequences, 
within the framework of second-order (in surface deflexion) supersonic flow 
theory. Parts of the formalism and technique are analogous to that employed in 
the first-order theory. However, the nature of the relation and results obtained 
are distinct-they do not have a precedent in first-order theory. 

The non-linear potential equation for compressible, perfect-gas flow is well 
known. Second-order theory comprises the second step in an iteration or expan- 
sion procedure in terms of the surface deflexion parameter; the first step gives 
linearized theory. Since the specious singularities of linearized theory are usually 
worsened by the ordinary procedure and require rather elaborate adjustment, the 
second step is a big step in terms of labour as well as accuracy. Adjusted or 
uniform or uniformly valid second-order theory accounts for much thicker 
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bodies at  moderate supersonic Mach number than linearized theory can account 
for. It is perhaps more important that, for a given thin body, it also accounts for 
the Mach number range between that of linearized theory and that of full 
hypersonic small-disturbance theory (see Clarke 1962); in practice, this inter- 
mediate Mach-number range is perhaps 2.5 to 6. 

The linearized potential must always be continuous but the first derivatives 
can be infinite at stagnation points, sharp wing edges, and the edges of vortex 
sheets; the second derivatives can be infinite (admitting the smoothed sense) 
on waves. A number of schemes for obtaining a spatially uniform second approxi- 
mation is particular cases has been offered, but the smoothing and analytic- 
continuation arguments have limited applicability; the principal techniques are 
associated with the work of Lighthill. Denoting by 7 the deflexion parameter for 
quasi-cyclinders (say), he proposes the expansion of the exact perturbation 
potential @ according to @(x, y, z )  = 7Dl(u, y, z )  +72@z(u, y, z )  + . . ., where the 
new co-ordinate u is related implicitly to the Cartesian co-ordinates (x, y, z )  
by x = u + 7x1(u, y, z )  + 72xz(u, y, z )  + . . . . The functions xi are to be determined so 
as to obviate the difficulties. It is sometimes convenient to interpret (u, y, z )  as 
locally distortable curvilinear co-ordinates in the (x, y, 2)-space, and sometimes 
as a new rectangular space. Within this framework, a number of ‘shift rules’ 
have been developed, according to which the ordinary first- and second-order 
solutions may be correctly adjusted and shocks then inserted between any limit 
surfaces. The reader may refer to discussions and/or extensions of these procedures 
by Lighthill (1954), Wallace & Clarke (1963), and Clarke & Wallace (1963). 
In  the second reference it is further suggested that it is often adequate to make 
the second-order solution uniformly valid only to first order (xl non-zero and 
xz disregarded). At any rate, the need for adjustment is always signalled by 
singularities in the ordinary first- or second-order solution. The last named can 
be not only wrong but internally inconsistent-in the sense that its irrotational 
equations can give vortex sheets (potential jumps) in the fluid interior where 
shocks belong nearby. 

In  accord with these remarks, we shall obtain the general reverse-flow 
relation, provide interpretations, and deduce results within the framework of 
ordinary first- and second-order theory. The defects are then to be adjusted in 
the course of the development where called for by the singularities. The alter- 
native procedure would be to use the (u, y, z )  co-ordinates and Lighthill’s formal- 
ism. Such results would not be edifying. We shall not attempt in this paper 
an extensive resume of the theory touched on in the preceding paragraphs. The 
reader may consult the references cited for details; the terminology employed 
here is consistent with that used by Clarke (1962), who has also listed the forms 
of the various equations needed for each class of body. However, the background 
material is not really needed to follow the development in its essentials. 

From the general reverse-flow relation, we shall show that the second-order 
increment in the drag of an arbitrary quasi-cylindrical body can always be ex- 
pressed as surface and volume integrals of the Jirst-order solutions corresponding 
to forwardand reverse flow past the body. We next obtain analogous results for the 
second-order transverse forces and moments on an arbitrary quasi-planar wing; 
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the first-order reverse flow in this case must correspond to certain zero-thickness 
wings. Thus, without solution of the second-order problem, the second-order 
aerodynamic forces on quasi-cylinders may be obtained from first-order solutions 
by quadrature; the only co-ordinates appearing in the integrals are the co- 
ordinates of integration. It is expected that these integrals would generally be 
carried out numerically in particular cases. Corresponding results for fusiform 
and other bodies could be written, but not with the same generality because the 
second-order circumferential flow does not enter the reverse-flow relation in the 
necessary manner; these bodies require further study. It is then pointed out that 
the results discussed above do not have to be adjusted when the singularities are 
due to wave phenomena. We also show in the paper how the reverse-flow integral 
can be made to yield the forward-flow pressure distribution on the surface. By 
suitable choice of the reverse flow, one can obtain an integral equation in this 
pressure wherein the kernel and the integrals to be evaluated are controllable by 
the aforesaid choice. In  a companion paper (Clarke & Wallace 1963), this tech- 
nique is applied to the delta wing with supersonic edges and a fully analytic, 
uniform second-order solution for surface pressure is obtained. 

The development of second-order theory has been impeded because of the 
difficulty in computing the effect of the spatial source distribution, whose strength 
is determined by the inhomogeneous terms in the differential equation. One 
would need particular integrals more general than those discovered by Van Dyke 
(1952) to remove these terms in the equation. The above integral-equation formu- 
lation, made possible by the reverse-flow method, offers a new method of attack. 

First-order solutions are always presumed known herein. Similarly, it  is 
assumed throughout that the first-order aerodynamic forces have been or will 
be obtained either by direct integration or from the usual reverse-flow relations 
of linearized theory; these often reduce or eliminate the requisite labour. It is 
possible to simplify the volume integrals that occur in the paper with certain 
devices developedin the companion paper. We shall not utilize them here because, 
however useful, they tend to get in the way of the essential points. 

2. General second-order reverse-flow relation 
We consider the supersonic steady flow of a perfect gas past a body (or bodies) 

fixed in a Cartesian frame (x, y, z). In  the undisturbed region upstream, the 
flow is uniform with pressure po, density po, Mach number M > 1, and velocity 
U = Ui, where U 0 and i is a unit vector in the x-direction. Similarly, j and 
k are unit vectors in the y- and z-directions, respectively. The equation of the 
body surface contains a small affine parameter r ,  on which the solution therefore 
depends. If, as r+O, the surface collapses on to a cylinder with streamwise 
generators, then the body is called a quasi-cylinder. If it  collapses to a stream- 
wise line, the body is called a fusiform body. The latter’s surface may contain 
anomalies like shoulders, near which the flow is quasi-cylindrical in nature. 
But when this surface is sufficiently smooth the body is then called a slender 
body. When both surfaces and lines appear in the limit, the body is a general 
body. With q the local velocity, we write 

q = u+v, ( 1 )  
14-2 
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where V is the full perturbation velocity to second order in r. To this order V 
will always be irrotational. A number of different series representations of V 
are generally required to express V throughout the field; these can be expected 
to overlap. 

The equations governing V = Vq5 may be written 

where 
V . W = Q  and V x V = O ,  

-B2 0 0 

B = J(M2- I),  and Q is determined by the first-order result in accord with the 
literature. These equations amount to the inhomogeneous wave equation in q5; 
they may be manipulated with the convenience of the equations of potential 
theory. On the body with outward normal n, the boundary condition is the 
appropriate approximation of ( U + V ) . n  = 0. The shock relations require that 
the jump in velocity at  shock waves with normal n be in accord with 

[ n x V ]  = 0 or [q5] = 0 (4) 
and an approximate version of 

(51 

where the symbol [ ] denotes the indicated jump on passing through the wave, 
a is the speed of sound, y is the ratio of specific heats, and the right member of 
( 5 )  is to be evaluated on the upstream side. The ordinary second-order solutions 
do not contain the freedom to impose (4) and ( 5 ) ,  and show non-uniformities near 
the neighbouring free-stream characteristics, these being the characteristics 
of the ordinary equations. The initial condition is that V must vanish every- 
where upstream of the foremost envelope of disturbance. The written-out ver- 
sions of all the relations just discussed treat U algebraically and hold for both 
directions of flow, except for the interpretation of ‘upstream’ in the initial con- 
dition. They also describe the first-order flow if the higher-order terms are 
discarded. 

Consider the forward flow U = U ,  > 0 past a body (or bodies) producing a 
perturbation velocity V,. Figure 1 gives some generalized sketches which include 
types of surfaces that might be present in a particular problem. Also consider 
a reverse flow U = U ,  = - U ,  past a body which is the same as or different from 
the body in forward flow and at our disposal. The forward and reverse flows are 
denoted by subscripts P and R, respectively, and have the same free stream 
Mach number and density. A useful connexion between the two flows is provided 
by the scalar product of U, and the volume-surface integral identity (Ward 
1955, p. 222) 

f A ,  (v,w,. n + vRw,. n - v,. W,n) ds 
r 
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where the region T‘ is bounded by the closed surface A’ with unit inward normal 
n. This identity is a consequence of the divergence theorem that contains the 
operators of equations (2); the vectors appearing must be continuous and differ- 
entiable once over T’. 

Choose two finite regions (collectively called T), one above the body and one 
below. Let the upper region be bounded by (i} the interior sides of the envelopes 
of disturbance in forward and reverse flow (see figure 1)) (ii) the upper true sur- 
face of the body in forward flow (depending on technique, it might be useful to 
enclose any edge singularities within tubes of vanishing radius), (iii) the upper 
surface of any vortex sheets present, and (iv) a closing surface lying near the 
(x, 9)-plane. The boundaries of the lower region are similar and the lower closing 
surface is contiguous with the upper. Now add the result for each region. The 

X 

FIGURE 1. Bodies and envelopes of disturbance due to forward and reverse flow. 

integral over the upper closing surface is cancelled by its lower counterpart 
since the vectors are continuous and the normals are opposite. Let V, satisfy 
(2) and V, satisfy (2) with Q = 0. Then the reverse flow satisfies theJirst-order 
equations and the integral over T contains only first-order quantities. The en- 
velopes of disturbance are in general surfaces of discontinuity in velocity. If 
these discontinuities are such that the surface integrand in (6) is continuous, 
then the integrals over the envelopes of disturbance in forward and reverse flow 
will vanish because on their exterior sides either the forward or reverse perturba- 
tion is zero. With the same supposition, velocity discontinuities across waves in 
the interior of T do not contribute a surface integral to the result. 

The conormal v is related to the unit surface normal n by the definition 
v = Y.n. On an undisturbed characteristic, v . n  = 0 and v lies along the wave 
such that its projection on the (y,z)-plane coincides with the projection of n. 
Within the framework of a distinctly different argument, Ward (1955, pp. 13, 
27, 72, 87 and 222) proves that sufficient conditions for the surface integrand 
in (6) to be continuous across a surface supporting a velocity discontinuity in 
one of the flow directions are that 

[nxV] = 0 and [n.W] = 0. (7a ,  8a)  
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Now these may be respectively written 

[$] = 0, and [v.V] = 0 or a[$]/& = 0. ( 7 6 ,  8 b )  

Thus ( 7 )  is sufficient for (8) when the surface is an undisturbed characteristic, 
while conditions ( 7 )  and (4) coincide. A first-order field, and specifically the 
reverse flow, will always fulfill (7  b )  and hence ( 7 )  and (8). But ordinary second- 
order solutions sometimes fail to yield (7b) .  In  second-order theory, one 
distinguishes between waves consisting of an undisturbed Mach cone (e.g. 
cone flow) and waves consisting of an envelope of undisturbed Mach cones 
(e.g. wedge flow). We may place a thin disk or pillbox along a wave and 
integrate (2a )  over the disk volume to verify (8a )  from the behaviour of Q. 
The first sort of wave will satisfy (8a )  while the second generally will not; and 
(8) is necessary for ( 7 ) .  The result [$] + 0 is never admissible. It is sometimes 
possible to smooth the body and approach the actual shape by a limiting process, 
but this is not generally satisfactory. We are then to render the field uniform 
and, in so doing, we fulfill (7  b )  across the correct discontinuity. This will still lie 
along the undisturbed Mach cone in the rectangular (u, y, z)-space; v will still 
lie along the wave so (8) will be fulfilled when ( 7 )  is. We therefore conclude that 
the surface integrand in (6) is always continuous across shock waves of the 
uniform second-order field. 

The general second-order reverse-flow relation then is 
a n 

(U,. V,%3,. n - U,. B,W,. n - V,. %3, U,. n) ds = U,. B,QdT, (9) J ~ 4 b i - A "  J T  

where A ,  is the surface of the body (or bodies) in forward flow, A ,  is the surface 
of any vortex sheets appearing within the envelopes of disturbance in forward 
and reverse flow, and n is the outward normal to A ,  or A,. We have also introduced 
the notation where a first-order velocity perturbation is denoted by 8 = V q  
instead of V = V$7 and where %3 = Y. 8. 

Equation (9) contains the two successive orders of magnitude. For quasi- 
cylinders the first two integrals are O ( T ~ )  and the second two are O(73); for slender 
bodies the first three integrals are O(74) and the fourth is O(+). The choice of a 
reverse flow that satisfies V.  %3 = 0 and V x B = 0 is essential because it sup- 
presses the forward flow over T and thereby makes possible useful deductions 
from (9). The choice also gives us a more manageable reverse flow that we can 
use in the intended manner (see 5 1). Because of the formal nature of (6), we are 
still free to choose the boundary conditions the reverse flow is to satisfy. In first- 
order theory, there are usually several variants that are equivalent within the 
allowable error: on a quasi-cylinder, for example, one can write 8 .  n = - U.  n, 
m.n  = -U.n ,  8 . v  = -U.n ,  or B.N = - U . n  (where v is the normal to the 
cylindrical reference surface and N is the normal to the cross-section perpendicular 
to U). We identify the parameter 7 in the reverse flow with the small parameter 7 

in the forward flow, because this is convenient. Then any subsequent approxima- 
tions made in the first-order reverse-flow problem, as defined by the equations 
and chosen boundary conditions, must be in accord with the allowable error in 
the second-order forward-flow problem ; it  is seen that a second-order modifica- 
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tion in the reverse flow will count in (9) in the larger terms. This error featurc is 
clear in the suitably defined first-order forward-flow problem: if we consider the 
formulation which seeks a second-order incremental improvement to it, then we 
know a second-order error introduced in it will negate the improvement sought. 
We will use the reverse-flow boundary conditions on body and vortex sheets that 
are consistent with the first- and second-order forward-flow problem. The first- 
order version of (9) is obtained by setting Q = 0, and replacing V, by BB7 and 
W, by ?ElF. The incremental second-order formulation then follows by 
subtraction. 

If the body in reverse flow is not the same as the one in forward flow, it might 
be as shown dashed in figure 1 (a) .  For the bodies sketched in figure 1 ( b )  and 
1 (c), a wing alone and without thickness might be convenient, as it was for the 
analysis of the linearized counterpart of 1(c) carried out by Clarke (1960). 
The interpretation of (9) has to be given separately according to whether the flow 
is to be analysed on the true surface of the body or on a cylindrical reference 
surface nearby. This is done in the next two sections. The general body defined 
represents the combined case. 

3. Interpretation for fusiform bodies 
The terms ?ElR.  n and W, . n on A ,  in (9) resemble slopes and U,. V, is a 

fragment of the second-order pressure relation. Equation (9) is useful for fusi- 
form bodies when (i) the second, third, and fourth integrals can all be evaluated 
in terms of the first-order forward and reverse flow (this is already the case for 
the fourth) and (ii) the term U,. V, is the essential part of the pressure relation. 
In  this case (9) evaluates a weighted integral of U, . V,. 

We discuss boundary conditions and surface geometry in the plane of n and 
U at a point P on the body surface, as shown in figure 2 (a) .  The unit vector N 
is normal to the cross-section through P perpendicular to U, C = i x N, and 
cos 6 = n . N. Because n. C = 0 we obtain from q . n = 0 the tangency condition in 
second-order theory V . N  = tan6 (U+%.i ) ,  (10) 

and first-order theory 8 . N  = Utan6, (11) 

for either flow direction. The vectors in (10) and (1 1) are to be evaluated on the 
true surface. From (3) we obtain the exact connexion 

W . n =  W. in . i+W.Nn.NrB2s in6V. i+cosSV.N.  (12) 

The vectors ?El and 8 have the same connexion. From (10) and (12) we evaluate 
the cited second-order forward-flow term in (9) as 

W,.n = -n. i (UF+(B2+1)8, . i ] .  (13) 

Similarly, we re-express, to the correct approximation, the cited first-order term 
for reverse flow past the same surface, say, as 

2Bm,.n = -n.i[U,+B28),.i]. (14) 

(15) 

It is useful to note that the first product in (9) may now be simplified to 
U,. V,?EIR. n = - U,U,. V,n. i - B2U,. 6,n. iBR. i, 
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so that only the first term in (15) contains the second-order flow. The same 
sort of simplification in accord with the allowable error gives for the first product 
in the third integral of (9) 

v,. m~ = V,. NBZZ. N f v,. CBR. c - B28p. iBI2. i. (16) 

For fusiform (and slender) bodies, the pressure relation for the second-order 
forward flow is 

(po -pp) /po  = U,.V,+&(V,.N)2+~(V,.C)2+first-ordcr terms. ( 1 7 )  

U - 
(a> (b)  

FIGURE 2. (a )  Plane of n and U at point P on body surface. ( b )  Forward and reverse 
fusiform bodies with partly common surfaces. 

To see the significance of these formalities, consider an inclined body of 
revolution for which V,. C = 0. Since V,. N is always known from (lo), then 
(16) is known, and (9) evaluates for us the integral 

if the reverse body is identical. Now the direct calculation of the second-order 
drag 

D, = -JA6(p,--p,)n.ids (19) 

using (17) requires direct calculation of only (18) from the second-order solution, 
since the other terms depend on the first-order forward flow; but we have just 
seen that (9) evaluates (18) in terms of first-order results ! Therefore (9) renders 
the second-order solution unnecessary. If we modify the reverse body as shown 
in figure 2(b), then the evaluation of (18) given by (9) contains the generic dis- 
tance to the shoulder of the cylindrical forebody in the reverse flow. (In this case, 
A, is to be interpreted as the surface of the forward body up to the shoulder.) 
We, in fact, get a well-posed integral equation in the current variable 1,; the inver- 
sion gives U,.V, on A,, the essential part of the pressure distribution. When 
our forward body is inclined, these connexions are spoiled because of the occur- 
rence of V, . C in (16) and (17),  although small cross-flows in the sense of Van Dyke 
(1951) can be considered. For other fusiform bodies these arguments must be 
buttressed by some knowledge of V,. C on A,. We shall not consider fusiform 
bodies further here, because the equivalent interpretations of (9) carry through 
quite generally and more simply for quasi-cylinders. 
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4. Interpretation for quasi-cylinders 
The flow on the surface of a quasi-cylinder can be related by Maclaurin-series 

expansion to the flow on the cylindrical reference surface that lies near the true 
surface for small 7. To second-order, 0(-r2) < 1. The lateral dimension or dimen- 
sions of the cylinder or skeleton are not small. Examples of quasi-cylinders are 
certain wings, ducts and wing-body combinations (but the body cannot close 
upstream or downstream). With the problem transferred to the reference surface, 
we may reinterpret the argument leading to (9) such that this surface is meant 
instead of A ;  T is then somewhat different. Thus, from (9), the required version 
of the second-order reverse-flow relation is 

P 

where C, is the reference surface of the portion of the body in forward flow 
appearing within the two envelopes of disturbance, C, is the reference surface of 
any vortex sheets appearing within the two envelopes of disturbance, and v 
is the outward normal to C, or Zv. The reference surface of the reverse body must 
lie on the same cylinder, if considered infinite, as &. The same is true for the two 
vortex sheets. For definiteness, we taken the reference surface of the reverse 
body to be identical with I;, inside the two envelopes of disturbance [see figure 
3 ( b )  for an illustration]; but items (ii) and (iii) under ( 6 )  can ultimately be inter- 
preted to represent any boundaries interior to the regions T.  The reverse and 
forward bodies themselves may still be different. 

It is easy to see that V ,  . v is always evaluated on I;, by the boundary condition 
and that U, . V,on C, is always the essential term in the pressurerelation. Further 
the jumps in the relevant components of V ,  across I;, can be evaluated. Therefore 
(20) evaluates, for all quasi-cylinders, the integral 

P 

J U,.V,BR.vds 
x b  

in terms of the first-order forward and reverse flow. By suitable choice of 2IR. v, 
we can evaluate second-order aerodynamic forces without solving the second- 
order problem, or we can formulate an integral equation to invert for U,.  V ,  
on C,; in exchange we have to obtain the chosen reverse-flow and work out the 
indicated integrals. 

It is now necessary to discuss these quantities in terms of an intrinsic co- 
ordinate system attached to the reference surface x F x, + X u  instead of to the 
true surface A E A, +A,.  Since the generators of Z: are parallel to the x-axis, 
let a = a(y, x )  and p = p(y, z )  be orthogonal curvilinear co-ordinates. Let 
p = 0 define C, and let ,8 increase in the direction of v [see figure 3 (a)] .  The lines 
of constant a are perpendicular to I;. Take the metric of the P-co-ordinate as unity 
so that p is also the distance from I;; further, /3 0. Let the metric of the a-co- 
ordinate be h. We then express the equation of A as 

p = G(x,a) ,  (21) 

where G is of order 7. For the examples of zero-thickness wings and vortex 
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sheets, A and C are both two-sided and we may distinguish when necessary 
between the sides with plus and minus signs as in the figure. The flow on A+ 
is conventionally continued to C+ analytically, and the flow on A- is likewise 
connected analytically to the flow on C-. The process transfers the jump surface 
from A to C, but the original physically significant one can be recovered later; 
however, the process fails at  points like the tip, where the singularityresembles the 
one at  sharp leading edges of wings. When C is two-sided, the (a,  p) system 
covers the region twice, but it is easy to see which sheet to use. For example, 
(a-, /3-) is identified with the flow on C-, on which /3- increases along v-. 

FIGURE 3. (a)  Quasi-cylindrical surface A described by intrinsic co-ordinates attached 
to reference cylinder X : a section by x = const. ( b )  Determination of pressure distribution 
on delta wing for forward flow. 

After expansion about the reference surface and replacement of q5 by y when- 
ever the error statement permits, the tangency condition on the surface 
/3 = G(x, a) of a body or a vortex sheet leads us to 

q5/3 = G,(U+p?,)f(l/h2)G,p?,-GP)/3/3 on C (22) 

q g =  UG, on C (23) 

according to second-order theory, and, correspondingly, to 

according to first-order theory (for either flow direction). 
From (20) and (22), we have 

vF.v = $F/3(x, a )  O) On C b )  (24) 

and the component is evaluated in terms of the known forward-body geometry 
and first-order forward flow. 

Using (23) and geometric considerations, we can express the term B,.v in 

( 2 5 )  
(20) as BR.v = -U,n , . i [ l+O(~~)]  on Cb, 

where n, is the outward normal t o  the reverse-body surface /3 = G,,(x, a). This 
expression is useful for evaluating the second-order drag; we would then choose 
nR = nF. 
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From the usual isentropic relation, the pressure on A may be written 

[p-po]/po = -U.V-QB.rn,  

to second order. Expansion about the reference surface gives 

[ p ( A )  -pO] /pO = - Uq5x - U G ~ I , , ~  - 4 8 .  ?lB on C 

for U 0. To first order, this is merely 

r~w - P ~ I / P ~  = - uqx. 
Since U,.V, = on Cb, 

in particular, we see from (27) that the only second-order term required to find 
p ,  on A, (and hence the aerodynamic forces) to second order is U,.V, on X b .  
And this is the first term in (20). 

Before discussing the jumps across X,, we first consider for illustration a simple 
geometry where no vortex sheets are present within the two envelopes of dis- 
turbance. Shown in figure 3 (b )  is a symmetric flat-plate delta wing with super- 
sonic edges. The reference surface is the plane z = 0; p = z and a = y for z > 0. 
If ( - 7) is the incidence, then G = (tan 7) x z m. The flow past each side is inde- 
pendent of the other, so that (20) may be applied to the side z 2 0 only and X, 
then refers only to this side of the reference surface. To solve for the surface 
pressure in forward flow, the reverse wing is chosen as shown. Because its super- 
sonic leading edge has a variable sweep angle, viz. tan-lk,, equation (20) is 
actually a family of relations and, in fact, formulates to a known integral equa- 
tion in the current variable k,. The components of 8, are constant. Since the 
first-order forward flow is well known, V,.v is evaluated by (24) and (22) and 
the right member of (20) is evaluated through the definition of Q for quasi- 
cylinders. The inversion would give the conical variable U,. V, on = 0. This 
problem is considered in detail and solved analytically in the companion paper; 
the solution is then adjusted to  make it uniform. 

Across a vortex sheet 
P ( G ) - P ( A L )  = 0. 

Using (27)) we get 
U(q5$-&) = - U G , S ( ~ ~ p + + r p ~ f i e p - ) - ~ [ 8 f . ~ + - 8 - . ~ - ]  on v,", (31) 

since G; = - G,f . One side of C, will be denoted by v,. We next form the jump 
(V+ - V-) . v+ on vv by applying (22) to both sides and adding 

-G$(~J+s++p+-~~-fi-)) on vv. (32) 

Since G, = - G:x, the first term on the right of (22) [the only one which is 0(7)] 
cancels. In  the right members of (31) and (32)) it is therefore permissible, to 
second order, to use the first-order results for GJx,  a). The two jumps are conse- 
quently evaluated in terms of first-order results ! The corresponding first-order 
jump conditions in forward or reverse flow are 

p$ -y; = 0 on vv, (33) 
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from (28) and (30), and 
pJ++pp- = 0 on r,, (34) 

from (23). To show how these results enter, we write the integral over C, in 
(20) in the jump form and use (33) and (34) for the reverse flow. The result is 

[(U, . v; - u, . V,) BR . v+ - u,. B,(V$ - vg ) . v+] as. (35) 

The two jumps in (35) are evaluated by (31) and (32), respectively, when these 
are interpreted to apply to the forward flow. If a region of uv is occupied by vortex 
sheets of the reverse flow but not of the forward flow, the integrand vanishes 
thereon because the left numbers of (31) and (32) must vanish. A contribution to 
(35) occurs when vortex sheets of the forward flow or both flows are present in 
a region. We may therefore reinterpret C, in (20) to signify the reference surface 
of any vortex sheets of the forward $ow appearing within the two envelopes of 
disturbance. The theory does not account for vortex instability and roll-up. 
This neglect is acceptable near the trailing edge, and only the near sheets enter 
the reverse-flow relation. 

The right members of (31) and (32) are simplified when (33) and (34) are 
inserted therein. Further, we wish to carry out the details in terms of the second- 
order incremental improvement to first-order results and therefore introduce the 
second-order potential f defined by 

9 = p+f, f = O(72). (36) 

Then our final results for vortex sheets in forward flow are 

from the continuity of the pressure, and 

1 .  + 1 
f&+ +f+- = (h+)2GvFa+ P,a+ + ~ G;Fa-vFa- - GF(p ;p+p+  - pFp-p-) on 0, @-I2 

(38) 
from the tangency of the flow. 

5. Second-order drag of an arbitrary quasi-cylinder 
Using the geometric framework and discussion of the last section, we can 

write down a t  once the second-order drag of an arbitrary quasi-cylinder. From 
(19), (27) and (36), we obtain the defining expression for the drag in forward 

(39) 
The first-order drag in forward flow is denoted by 9,. Of the three integrals 
giving the second-order increment, the last two are seen to depend on first-order 
results. Noting the first integral in (ZO), (25) and (36), we see we want 

n, = n, = n 
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and choose the body in reverse flow to be the same as the one of interest in forward 
flow. We write (20) in terms of potentials, subtract from it its first-order counter- 
part, utilize the discussion of the last section, and find immediately the reverse- 
flow result 

n 

-POJ T ~ x x Q d T ,  (40) 

where the two jumps across a; are evaluated by (37) and (38). Thus the single 
integral in (39) depends on the second-order solution is expressed by (40) in 
terms of the geometry a.nd the first-order forward and reverse flows past the body 
of interest. 

An elementary calculation verifies that (39) and (40) lead to the same formula 
for the drag of an arbitrary two-dimensional section that one obtains from the 
Busemann second-order theory (see e.g. Lighthill 1954). 

6. Second-order transverse forces and pitching moments on an arbi- 
trary quasi-planar wing 

Consider a wing whose reference surface consists of the two sides of the plane 
z = 0 within the projection thereon of the planform. Suppose the upper and 
lower surfaces are denoted simply by 

z = +Z(z,y) and -Z(x,y), (41) 

respectively. We wish to determine the transverse force supported by some part 
or all of its planform in forward flow, i.e. the partial or entire lift. We also want 
the pitching moment contributed by this part of the planform or the entire 
planform. Consider a cylinder with generators parallel to z that cuts out a portion 
A* of A ,  and a portion 5* of G,, where c, is one side of the wing reference surface; 
A* might denote the surfaces of a flap or, of course, the entire wing. Using (27) 
and (36), we obtain the defining expression for the second-order transverse force 
Lgy contributed by A* in forward flow 

-G = -JA*(P*-Po)nF.kds  

= 9; +PO 41 (fA -fa d5 +PO UFJ (V;xz+z - Vi&-Z) ds 

++PO/ U* (%I$. arg - 235. a,) ds. 

U* U* 

(42) 

Here 9% is the first-order transverse force contributed by A* in forward 
flow. Let r be the position vector. Then the defining expression for the second- 
order pitching moment contributed by A* in forward flow, viz. 
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is almost the same as ( 4 2 ) :  replace ,5; - 2'; by H; - A?; and multiply the three 
integrands by ( - x). Here d$ is the first-order version of M$. Since the remaining 
integrals follow from the first-order soIution for the wing of interest, we require 

( 4 3 )  Po q-u* ( f$z  -fa ds and -Po q-u* ( f$x  -f&) xds 

to find L$ and M $ ,  respectively. 
It is simple to contrive a reverse flow enabling the construction of these two 

integrals in (20); their evaluation then follows from the discussion of 94.  Intro- 
duce the potentials in (20), subtract its first-order counterpart, and write the 
result in the jump form across x = 0. The result is 

After comparing the first two terms on t h e  left (on rbj with ( 4 3 ) ,  we choose a 
lifting wing with the same planform but without thickness for the reverse body, 
because the boundary condition then is 

FA2 = pgz  = IJRZb12z - c\?ali(x) y) on g b .  ( 4 5 )  

Here we have also introduced the angle of attack aR. Since this is still arbitrary, 
we can construct the integrals in ( 4 3 )  as well as others like them. Because (45) 
implies a solution for the potential pR that is odd in z, we obtain the property 

v& = -(PAX On ub, 

while equations ( 3 3 )  and ( 3 4 )  become 

The first half of ( 4 7 )  suppresses in (44)  one of the vortex discontinuities in for- 
ward flow. I n  accord with the discussion in 94, we use (22 ) ,  ( 2 3 ) ,  ( 3 6 )  and ( 3 7 )  in 
(44 )  and obtain the desired reverse-flow result 

PouF/Db (fiL-f5J 0"rtds = -Poj-u*vfz(Gz+fF2) ds-PJU" ( f A - f F z )  vxads 
r 

where 
f S2 +f  ii = +z, + -2, v~~ + +z, v&, + -2, YF, - +Zv$, - -ZP)F~, on g b  

( 4 8 b )  

( 4 8 c )  and 

The terms on the right side of ( 4 8 a )  depend on only the geometry and the two 
first-order flows. Of course, the integral over CT, might well be absent for the 
particular wing of interest. 

+ Z  
G X  -f& = - -%,(PAC2 - 9%2) - 2c', (PF, - Pi$) on gv- 

Now to construct in ( 4 8 a )  the first integral in ( 4 3 ) )  let 

( k  on g* 
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where Ic is a constant which then will cancel out because pR N k. To construct 
the second integral in (43), let 

I - k x  on v* 
E R = % \  o on vb-c*I* (49 b )  

This completes the demonstration. Evaluation of the three integrals on the 
right side of (48a) is facilitated by the usual decomposition of vF into the thick- 
ness and lift problems 

PP = P)H’l+ VP2. 

The first is an even function of x and the second is an odd function so that simpli- 
fications due to symmetry and antisymmetry appear; T is symmetric about 
z = 0;  the form of Q is simplified. Some further techniques for evaluation of 
these integrals are presented in the companion paper. 

In $55 and 6 we have evaluated (in terms of the first-order flows) certain 
second-order aerodynamic forces on quasi-cylinders using (20). These are pre- 
sented as illustrations. Clearly, other results of similar nature may be deduced 
as required. 

7. Adjustment of expressions for second-order forces 
These expressions for the second-order forces and moments on quasi-cylinders, 

obtained by use of the reverse-flow results with the defining expressions, must 
be examined and adjusted for defects in the first-order theory before they are 
in accord with a uniform (or more uniform) second-order theory. This has to 
be done for the specific problem at hand. It would be sufficient to make the first- 
order result uniform throughout the region but this is not generally necessary in 
order to make just the integrals correct. One well-known illustration of this 
point is the fact that the edge forces on wings may be determined correctly to 
fir3t-order from the ordinary non-uniform solution by enclosing the singular 
edge with a vanishing tubular surface (see Ward 1955). 

The nature of the procedure required is better appreciated by considering 
the integral over the body of the pressure as it would be given, in turn, by ordinary 
and uniform first-order theory, and by ordinary and uniform second-order 
theory. Whereas there is no one-to-one correspondence of integration regions 
in this direct calculation and the indirect reverse-flow calculation of second- 
order force, it  is clear that the nature and treatment of the singularities must be 
the same in each. Thus, the expressions we have deduced above might not even 
converge without adjustment, much less yield the correct result. Considering 
the class of problems wherein the singularities are associated with the wave 
phenomena (perhaps the most interesting class), two specific comparisons among 
such pressure distributions are provided by Wallace & Clarke (1963) and Clarke 
& Wallace (1963). In this class of problems, it appears that the adjustments 
to ordinary second-order theory make, in general, only higher-order contributions 
to the forces and moments and may be disregarded. This implies that the expres- 
sions deduced for the second-order forces may be evaluated as they stand using 
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ordinary first-order results, although i t  might be necessary to remove the 
singularities in these first-order results, e.g. by expanding about singular points 
and deleting singular terms or by smoothing. But local adjustment of the first- 
order wave system is generally necessary when computing directly the corre- 
sponding first-order forces; the contributions that render the solution uniform 
add terms to the forces that can be of the same order as the second-order terms 
discussed. The use of Whitham’s Shift Rule for this purpose can readily be 
accomplished graphically. While it is true that the first-order adjustments can 
make second-order contributions to the force throughout the region, if included, 
the contributions away from the singular surfaces are spurious; this is proved 
by Wallace & Clarke (1963, see equation (43)). 
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